Linear Bayesian Reinforcement Learning

نویسندگان

  • Nikolaos Tziortziotis
  • Christos Dimitrakakis
  • Konstantinos Blekas
چکیده

This paper proposes a simple linear Bayesian approach to reinforcement learning. We show that with an appropriate basis, a Bayesian linear Gaussian model is sufficient for accurately estimating the system dynamics, and in particular when we allow for correlated noise. Policies are estimated by first sampling a transition model from the current posterior, and then performing approximate dynamic programming on the sampled model. This form of approximate Thompson sampling results in good exploration in unknown environments. The approach can also be seen as a Bayesian generalisation of least-squares policy iteration, where the empirical transition matrix is replaced with a sample from the posterior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Bayesian Reinforcement Learning via Approximate Linear Programming

In this paper, we consider the safe learning scenario where we need to restrict the exploratory behavior of a reinforcement learning agent. Specifically, we treat the problem as a form of Bayesian reinforcement learning in an environment that is modeled as a constrained MDP (CMDP) where the cost function penalizes undesirable situations. We propose a model-based Bayesian reinforcement learning ...

متن کامل

Model-based Bayesian Reinforcement Learning in Partially Observable Domains

Bayesian reinforcement learning in partially observable domains is notoriously difficult, in part due to the unknown form of the beliefs and the optimal value function. We show that beliefs represented by mixtures of products of Dirichlet distributions are closed under belief updates for factored domains. Belief monitoring algorithms that use this mixture representation are proposed. We also sh...

متن کامل

Cover tree Bayesian reinforcement learning

This paper proposes an online tree-based Bayesian approach for reinforcement learning. For inference, we employ a generalised context tree model. This defines a distribution on multivariate Gaussian piecewise-linear models, which can be updated in closed form. The tree structure itself is constructed using the cover tree method, which remains efficient in high dimensional spaces. We combine the...

متن کامل

Bayesian Nonparametric Feature Construction for Inverse Reinforcement Learning

Most of the algorithms for inverse reinforcement learning (IRL) assume that the reward function is a linear function of the pre-defined state and action features. However, it is often difficult to manually specify the set of features that can make the true reward function representable as a linear function. We propose a Bayesian nonparametric approach to identifying useful composite features fo...

متن کامل

A Bayesian Reinforcement Learning framework Using Relevant Vector Machines

In this work we present an advanced Bayesian formulation to the task of control learning that employs the Relevance Vector Machines (RVM) generative model for describing value functions. The key aspect of the proposed method is the design of the discount return as a generalized linear model that constitutes a well-known probabilistic approach. This allows to augment the model with advantageous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013